
On the quantifier-free dynamic complexity of
Reachability

Thomas Zeume and Thomas Schwentick

TU Dortmund University
Germany

Abstract. The dynamic complexity of the reachability query is stud-
ied in the dynamic complexity framework of Patnaik and Immerman,
restricted to quantifier-free update formulas.
It is shown that, with this restriction, the reachability query cannot be
dynamically maintained, neither with binary auxiliary relations nor with
unary auxiliary functions, and that ternary auxiliary relations are more
powerful with respect to graph queries than binary auxiliary relations.
Further results are obtained including more inexpressibility results for
reachability in a different setting, inexpressibility results for some other
queries and normal forms for quantifier-free update programs.

1 Introduction

In modern data management scenarios, data is subject to frequent changes.
In order to avoid costly re-computations from scratch after each small update,
one can try to (re-)use auxiliary data structures that has been already computed
before to keep the information about the data up-to-date. However, the auxiliary
data structures need to be updated dynamically whenever the data changes.

The descriptive dynamic complexity framework (short: dynamic complexity)
introduced by Patnaik and Immerman [1] models this setting. It was mainly
inspired by relational databases. For a relational database subject to change,
auxiliary relations are maintained with the intention to help answering a query
Q. When an update to the database, an insertion or deletion of a tuple, occurs,
every auxiliary relation is updated through a first-order query that can refer to
the database as well as to the auxiliary relations. A particular auxiliary relation
shall always represent the answer to Q. The class of all queries maintainable in
this way, and thus also in the core of SQL, is called DynFO.

Beyond query or view maintenance in databases we consider it an important
goal to understand the dynamic complexity of fundamental algorithmic prob-
lems. Reachability in directed graphs is the most intensely investigated problem
in dynamic complexity (and also much studied in dynamic algorithms and other
dynamic contexts) and the main query studied in this paper. It is one of the
simplest inherently recursive queries and thus serves as a kind of drosophila in
the study of the dynamic maintainability of recursive queries by non-recursive
means. It can be maintained with first-order update formulas supplemented by

2 Thomas Zeume and Thomas Schwentick

counting quantifiers on general graphs [2] and with plain first-order update for-
mulas on both acyclic graphs and undirected graphs [1]. However, it is not known
whether Reachability on general graphs is maintainable with first-order updates.
This is one of the major open questions in dynamic complexity.

All attempts to show that Reachability cannot be maintained in DynFO have
failed. In fact, there are no general inexpressibility results for DynFO at all.1

This seems to be due to a lack of understanding of the underlying mechanisms
of DynFO. To improve the understanding of dynamic complexity, mainly two
kinds of restrictions of DynFO have been studied: (1) limiting the information
content of the auxiliary data by restricting the arity of auxiliary relations and
functions and (2) reducing the amount of quantification in update formulas.

A study of bounded arity auxiliary relations was started in [3] and it was
shown that unary auxiliary relations are not sufficient to maintain the reacha-
bility query with first-order updates. Further inexpressibility results for unary
auxiliary relations were shown and an arity hierarchy for auxiliary relations was
established. However, to separate level k from higher levels, database relations
of arity larger than k were used. Thus the hierarchy has not yet been established
for queries on graphs. In [4] it was shown that unary auxiliary relations are not
sufficient to maintain Reachability for update formulas of any local logic. The
proofs strongly use the “static” weakness of local logics and do not fully exploit
the dynamic setting, as they only require update sequences of constant length.

The second line of research was initiated by Hesse [5]. He invented and studied
the class DynProp of queries maintainable with quantifier-free update formu-
las. He proved that Reachability on deterministic graphs (i.e. graphs of unary
functions) can be maintained with quantifier-free first-order update formulas.

There is still no proof that Reachability on general graphs cannot be main-
tained in DynProp. However, some inexpressibility results for DynProp have
been shown in [6]: the alternating reachability query (on graphs with ∧- and
∨-nodes) is not maintainable in DynProp. Furthermore, on strings, DynProp
exactly contains the regular languages (as Boolean queries on strings).

Contributions. The high-level goal of this paper is to achieve a better under-
standing of the dynamic maintainability of Reachability and dynamic complexity
in general. Our main result is that the reachability query cannot be dynamically
maintained by quantifier-free updates with binary auxiliary relations. This result
is weaker than that of [3] in terms of the logic (quantifier-free vs. general first-
order) but it is stronger with respect to the information content of the auxiliary
data (binary vs. unary). We establish a strict hierarchy between DynProp for
unary, binary and ternary auxiliary relations (this is still open for DynFO).

We further show that Reachability is not maintainable with unary auxiliary
functions (plus unary auxiliary relations). Although unary functions provide
less information content than binary relations, they offer a very weak form of

1 Of course, a query maintainable in DynFO can be evaluated in polynomial time and
thus queries that cannot be evaluated in polynomial time cannot be maintained in
DynFO either.

On the quantifier-free dynamic complexity of Reachability 3

quantification in the sense that more elements of the domain can be taken into
account by update formulas.

All these results hold in the setting of Patnaik and Immerman where up-
date sequences start from an empty database as well as in the setting that
starts from an arbitrary database, where the auxiliary data is initialized by an
arbitrary function. We show that if, in the latter setting, the initialization map-
ping is permutation-invariant, quantifier-free updates cannot maintain Reacha-
bility even with auxiliary functions and relations of arbitrary arity. Intuitively
a permutation-invariant initialization mapping maps isomorphic databases to
isomorphic auxiliary data. A particular case of permutation-invariant initializa-
tion mappings, studied in [7], is when the initialization is specified by logical
formulas. In this case, lower bounds for first-order update formulas have been
obtained for several problems [7].

We transfer many of our inexpressibility results to the k-Clique query for
fixed k ≥ 3 and the k-Col query for fixed k ≥ 2.

Finally, we show two normal form results: every query in DynProp is already
maintainable with negation-free quantifier-free formulas only as well as with
conjunctive quantifier-free formulas only. Thus, one approach to inexpressibility
proofs could be to use these syntactically restricted update formulas.

Related Work. We already mentioned the related work that is most closely
related to our results. As said before, the reachability query has been studied in
various dynamic frameworks, one of which is the Cell Probe model. In the Cell
Probe model, one aims for lower bounds for the number of memory accesses of a
RAM machine for static and dynamic problems. For dynamic reachability, lower
bounds of order log n have been proved [8].

Outline. In Section 2 we fix our notation and in Section 3 we define our
dynamic setting more precisely. The lower bound results for Reachability are
presented in Section 4 (for auxiliary relations) and in Section 5 (for auxiliary
functions). In Section 6 we transfer the lower bounds to other queries. Finally,
we establish the two normal forms for DynProp in Section 7. Due to the space
limit, most proofs are only available in the full version of the paper [9].

Acknowledgement. We thank Ahmet Kara and Martin Schuster for careful
proofreading. We acknowledge the financial support by the German DFG under
grant SCHW 678/6-1.

2 Preliminaries

A domain is a finite set. A schema (or signature) τ consists of a set τrel of
relation symbols and a set τconst of constant symbols together with an arity
function Ar : τrel 7→ N. A database D of schema τ with domain D is a mapping
that assigns to every relation symbol R ∈ τrel a relation of arity Ar(R) over D
and to every constant symbol c ∈ τconst an element (called constant) from D.

A τ -structure S is a pair (D,D) where D is a database with schema τ and
domain D. Sometimes we omit the schema when it is clear from the context. If S
is a structure over domain D and D′ is a subset of D that contains all constants

4 Thomas Zeume and Thomas Schwentick

of S, then the substructure of S induced by D′ is denoted by S �D′. For two
structures S and T we write S 'π T if S and T are isomorphic via π.

The k-ary atomic type2 〈S,~a〉 of a tuple ~a = (a1, . . . , ak) over D with respect
to a τ -structure S is the set of all atomic formulas ϕ(~x) with ~x = (x1, . . . , xk)
for which ϕ(~a) holds in S, where ϕ(~a) is short for the substitution of ~x by ~a in
ϕ. We note that the atomic formulas can use constant symbols.

An s-t-graph is a graph G = (V,E) with two distinguished nodes s and
t. A k-layered s-t-graph G is a directed graph (V,E) in which V − {s, t} is
partitioned into k layers A1, . . . , Ak such that every edge is from s to A1, from
Ak to t or from Ai to Ai+1, for some i ∈ {1, . . . , k − 1}. The s-t-reachability
query s-t-Reach is a Boolean query that is true for an s-t-graph G, if and only
if t can be reached from s in G.

3 Dynamic Queries and Programs

The following presentation follows [10] and [11]. For a more formal introduction,
see [9].

A dynamic instance of the s-t-reachability query is a pair (G,α), where G
is an s-t-graph and α is a sequence of changes to G, i.e. a sequence of edge
insertions and deletions. The dynamic s-t-reachability query Dyn(s-t-Reach)
yields as result the relation that is obtained by first applying the updates from α
to G and then evaluating the s-t-reachability query on the resulting graph. This
setting extends to general databases and other queries in a straightforward way.

The database resulting from applying an update δ to a database D is denoted
by δ(D). The result α(D) of applying a sequence of updates α = δ1 . . . δm to a
database D is defined by α(D)

def
= δm(. . . (δ1(D)) . . .).

Dynamic programs, to be defined next, consist of an initialization mechanism
and an update program. The former yields, for every database D an initial state
of P with initial auxiliary data (and possibly with further built-in data). The
latter defines the new state, for each update in α. Built-in data never changes.
In general, built-in data can be “simulated” by auxiliary data yet this does not
(seem to) hold for all of the restricted kinds of auxiliary data studied in this
paper.

A dynamic schema is a triple (τin, τaux, τbi) of schemas of the input database,
the built-in database and the auxiliary database, respectively. We always let
τ

def
= τin ∪ τaux ∪ τbi.

Definition 1. (Update program) An update program P over dynamic schema
(τin, τaux, τbi) is a set of first-order formulas (called update formulas in the fol-
lowing) that contains, for every R ∈ τaux and every δ ∈ {insS ,delS} with
S ∈ τin, an update formula φRδ (x1, . . . , xl; y1, . . . , ym) over the schema τ where l
is the arity of S and m is the arity of R.

2 As we only consider atomic types in this paper, we will often simply say type instead
of atomic type.

On the quantifier-free dynamic complexity of Reachability 5

A program state S over dynamic schema (τin, τaux, τbi) is a structure (D, I,A,B)
where D is the domain, I is a database over the input schema (the current
database), A is a database over the auxiliary schema (the auxiliary database)
and B is a database over the built-in schema (the built-in database).

The semantics of update programs is as follows. For an update δ(~a) and
program state S = (D, I,A,B) we denote by Pδ(S) the state (D, δ(I),A′,B),

where A′ consists of relations R′
def
= {~b | S |= φRδ (~a;~b)}. The effect Pα(S) of an

update sequence α = δ1 . . . δm to a state S is the state Pδm(. . . (Pδ1(S)) . . .).

Definition 2. (Dynamic program) A dynamic program is a triple (P, Init, Q),
where P is an update program over some dynamic schema (τin, τaux, τbi), the
tuple Init = (Initaux, Initbi) consists of a function Initaux that maps τin-
databases to τaux-databases and a function Initbi that maps domains to τbi-
databases, and Q ∈ τaux is a designated query symbol.

A dynamic program P = (P, Init, Q) maintains a dynamic query Dyn(Q)
if, for every dynamic instance (D, α), the relation Q(α(D)) coincides with the
query relation QS in the state S = Pα(SInit(D)), where SInit(D) is the initial
state, i.e. SInit(D)

def
= (D,D, Initaux(D), Initbi(D)).

Several dynamic settings and restrictions of dynamic programs have been
studied in the literature [1, 12, 7, 11]. Possible parameters are, for instance:
– the logic in which update formulas are expressed;
– whether in dynamic instances (D, α), the initial database D is always empty;
– whether the initialization mapping Initaux is permutation-invariant (short:

invariant), that is, whether π(Initaux(D)) = Initaux(π(D)) holds, for every
database D and permutation π of the domain; and

– whether there are any built-in relations at all.

Definition 3. (DynFO, DynProp) DynFO is the class of all dynamic queries
maintainable by dynamic programs with first-order update formulas. DynProp
is the subclass of DynFO, where update formulas do not use quantifiers. A
dynamic program is k-ary if the arity of its auxiliary relation symbols3 is at
most k. By k-ary DynProp (resp. DynFO) we refer to dynamic queries that
can be maintained with k-ary dynamic programs.

Thus in our basic setting the initialization mappings can be arbitrary. We
will explicitly state when we relax this most general setting. Figure 1 illustrates
the relationships between the various settings for the initialization. From now
on we restrict our attention to quantifier-free update programs. Next, we give a
non-trivial example for such a program.

Example 1. We provide a DynProp-program P for the dynamic variant of the
Boolean query NonEmptySet, where, for a unary relation U subject to inser-
tions and deletions of elements, one asks whether U is empty. It illustrates a
technique to maintain lists with quantifier-free dynamic programs, introduced
in [11, Proposition 4.5], which is used in some of our upper bounds.

3 We note that this restriction does not apply to the built-in relations.

6 Thomas Zeume and Thomas Schwentick

Fig. 1.
Initializations con-
sidered in literature
and lower bounds
obtained in this
paper for quantifier-
free updates.

empty initial database
with arbitrary initialization

empty initial database
with empty initialization

non-empty initial database
with arbitrary initialization

non-empty initial database
with invariant initialization

=

⊆

⊆⊆

General Lower Bounds Binary Lower Bounds

The program P is over auxiliary schema τaux = {Q,First,Last,List},
where Q is the query bit (i.e. a 0-ary relation symbol), First and Last are
unary relation symbols, and List is a binary relation symbol. The idea is to
store in a program state S a list of all elements currently in U . The list structure
is stored in the binary relation ListS such that ListS(a, b) holds for all elements
a and b that are adjacent in the list. The first and last element of the list are
stored in FirstS and LastS , respectively. We note that the order in which the
elements of U are stored in the list depends on the order in which they are
inserted into the set.

For a given instance of NonEmptySet the initialization mapping initializes
the auxiliary relations accordingly.

The update formulas for insertions are as follows:

φFirstins (a;x)
def
= (¬Q ∧ a = x) ∨ (Q ∧ First(x)) φLastins (a;x)

def
= a = x

φListins (a;x, y)
def
= List(x, y) ∨ (Last(x) ∧ a = y) φQins(a)

def
= >

For deletions we only exhibit the update formula for List, the others are similar.

φListdel (a;x, y)
def
= x 6= a ∧ y 6= a ∧

(
List(x, y) ∨ (List(x, a) ∧ List(a, y))

)

4 Lower Bounds for Dynamic Reachability

In this section we prove lower bounds for the maintainability of the dynamic
s-t-reachability query Dyn(s-t-Reach).

The proofs use the following tool which is a slight variation of Lemma 1 from
[11]. The intuition is as follows. When updating an auxiliary tuple ~c after an

insertion or deletion of a tuple ~d, a quantifier-free update formula has access
to ~c, ~d, and the constants only. Thus, if a sequence of updates changes only
tuples from a substructure S ′ of S, the auxiliary data of S ′ is not affected by
information outside S ′. In particular, two isomorphic substructures S ′ and T ′
should remain isomorphic, when corresponding updates are applied to them.

We formalize the notion of corresponding updates as follows. Let π be an
isomorphism from a structure S to a structure T . Two updates δ(~a) on S and

δ(~b) on T are said to be π-respecting if~b = π(~a). Two sequences α = δ1 · · · δm and
β = δ′1 · · · δ′m of updates respect π if, for every i ≤ m, δi and δ′i are π-respecting.

On the quantifier-free dynamic complexity of Reachability 7

Lemma 2 (Substructure Lemma). Let P be a DynProp program and S
and T states of P with domains S and T , respectively. Further, let S′ ⊆ S and
T ′ ⊆ T such that S � S′ and T � T ′ are isomorphic via π. Then Pα(S) � S′ and
Pβ(T)�T ′ are isomorphic via π for all π-respecting update sequences α, β on S′

and T ′.

The Substructure Lemma can be applied along the following lines to prove
that Dyn(s-t-Reach) cannot be maintained in some settings with quantifier-
free updates. Towards a contradiction, assume that there is a quantifier-free
program P = (P, Init, Q) that maintains Dyn(s-t-Reach). Then, find

– two states S and T occurring as states4 of P with current graphs GS and GT ;
– substructures S ′ and T ′ of S and T isomorphic via π; and
– two π-respecting update sequences α and β such that α(GS) is in s-t-Reach

and β(GT) is not in s-t-Reach.

This yields the desired contradiction, since Q has the same value in Pα(S) and
Pβ(T) by the Substructure Lemma.

How such states S and T can be obtained depends on the particular setting.
Yet, Ramsey’s Theorem and Higman’s Lemma often prove to be useful for this
task. Next, we present the variants of these theorems used in our proofs. We
refer to [9] and [13, Proposition 2.5, page 3] for proofs.

Theorem 3 (Ramsey’s Theorem for Structures). For every schema τ and
all natural numbers k and n there exists a number Rτ,k(n) such that, for every

τ -structure S with domain A of size Rτ,k(n), every ~d ∈ Ak and every order ≺
on A, there is a subset B of A of size n with B ∩ ~d = ∅, such that, for every l,
the type of (~a, ~d) in S is the same, for all ≺-ordered l-tuples ~a over B.

A word u is a subsequence of a word v, in symbols u v v, if u = u1 . . . uk and
v = v0u1v1 . . . vk−1ukvk for some words u1, . . . , uk and v0, . . . , vk.

Theorem 4 (Higman’s Lemma). For every alphabet of size c and function g :
N→ N there is a natural number H(c) such that in every sequence (wi)1≤i≤H(c)

of H(c) many words with |wi| ≤ g(i) there are l and k with l < k and wl v wk.

Before turning towards lower bounds for arbitrary initialization, we state a
lower bound for the restricted setting of invariant initialization. Intuitively lower
bounds in this setting can be obtained easier because invariant initialization
cannot generate complex initial auxiliary structures such as lists from simple-
structured input databases.

Theorem 5. Dyn(s-t-Reach) cannot be maintained in DynProp with invari-
ant initialization mapping and empty built-in schema. This holds even for 1-
layered s-t-graphs.

4 I.e. S = Pδ(SInit(G)) for some s-t-graph G, and likewise for T .

8 Thomas Zeume and Thomas Schwentick

4.1 A Binary Lower Bound

As already mentioned in the introduction, the proof that Dyn(s-t-Reach) is
not in unary DynFO in [3] uses constant-length update sequences, and is mainly
an application of a locality-based static lower bound for monadic second order
logic. This technique does not seem to generalize to binary DynFO. We prove
the first unmaintainability result for Dyn(s-t-Reach) with respect to binary
auxiliary relations.

Theorem 6. Dyn(s-t-Reach) is not in binary DynProp.

The proof of Theorem 6 will actually show that binary DynProp cannot
even maintain Dyn(s-t-Reach) on 2-layered s-t-graphs. These restricted graphs
will then help us to separate binary DynProp from ternary DynProp. This
separation shows that the lower bound technique for binary DynProp does not
immediately transfer to ternary DynProp. At the moment we do not know
whether it is possible to adapt the technique to full DynProp.

The following notion of homogeneous sets is used in the proof of Theorem 6.
Let S be a structure of some schema τ and A, B disjoint subsets of the domain
of S. We say that B is A-≺-homogeneous up to arity m, if for every l ≤ m, all
tuples (a,~b), where a ∈ A and ~b is an ≺-ordered l-tuple over B, have the same
type. We may drop the order ≺ from the notation if it is clear from the context,
and we may drop A if A = ∅. We observe that if the maximal arity of τ is m
and B is A-homogeneous up to arity m, then B is A-homogeneous up to arity
m′ for every m′. In this case we simply say B is A-homogeneous.

Lemma 7. For every schema τ and natural number n, there is a natural number
Rhom
τ (n) such that for any two disjoint subsets A, B of the domain of a τ -

structure S with |A|, |B| ≥ Rhom
τ (n), there are subsets A′ ⊆ A and B′ ⊆ B such

that |A′|, |B′| = n and B′ is A′-homogeneous in S.

Proof (of Theorem 6). Let us assume, towards a contradiction, that the
dynamic program (P, Init, Q) over schema τ = (τin, τaux, τbi) with binary τaux
maintains the dynamic s-t-reachability query for 2-layered s-t-graphs. We choose
numbers n, n1, n2 and n3 such that n3 is sufficiently large with respect to τ , n2
is sufficiently large with respect to n3, n2 is sufficiently large with respect to n1
and n is sufficiently large with respect to n1.

Let G = (V,E) be a 2-layered s-t-graph with layers A, B, where A and B
are both of size n and E = {(b, t) | b ∈ B}. Further, let S = (V,E,A,B) be the
state obtained by applying Init to G.

We will first choose homogeneous subsets. By Lemma 7 and because n is
sufficiently large, there are subsets A1 and B1 such that |A1| = |B1| = n1 and B1

is A1-≺-homogeneous in S, for some order ≺. Next, let A2 and B2 be arbitrarily
chosen subsets of A1 and B1, respectively, of size |B2| = n2 and |A2| = 2|B2|,
respectively. We note that B2 is still A2-homogeneous. In particular, B2 is still
A2-homogeneous with respect to schema τbi. We associate with every subset
X ⊆ B2 a unique vertex aX from A2 in an arbitrary fashion.

Now,we define the update sequence α as follows.

On the quantifier-free dynamic complexity of Reachability 9

Tl: s

t

aX1
aXk

aXl

b1 bi1−1 bi1 bi1+1 bi2−1 bi2 bi2+1 bk bk+1 bik−1 bik bik+1 bl

Tk: s

t

aX1
aXk aXl

b1 bi1−1 bi1 bi1+1 bi2−1 bi2 bi2+1 bk bk+1 bik−1 bik bik+1 bl

Fig. 2. The structure S ′ from the proof of Theorem 6. The isomorphic substruc-
tures Tk and Tl are highlighted in blue.

(α) For every subset X of B2 and every b ∈ X insert an edge (aX , b), in some
arbitrarily chosen order.

Let S ′ def
= (V,E′,A′,B) be the state of P after applying α to S, i.e. S ′ = Pα(S).

We observe that the built-in data has not changed, but the auxiliary data might
have changed. In particular, B2 is not necessarily A2-homogeneous with respect
to schema τaux in state S ′.

Our plan is to exhibit two sets X,X ′ such that X (X ′ ⊆ B2 such that the
restriction of S ′ to {s, t, aX′}∪X ′ contains an isomorphic copy of S ′ restricted to
{s, t, aX}∪X. Then the Substructure Lemma will easily give us a contradiction.

By Ramsey’s Theorem and because |B2| is sufficiently large with respect to
n2, there is a subset B3 ⊆ B2 of size n3 such that B3 is ≺-homogeneous in S ′. Let
b1 ≺ . . . ≺ bn3

be an enumeration of the elements of B3 and let Xi
def
= {b1, . . . , bi},

for every i ∈ {1, . . . , n3}.
Let S ′i denote the restriction of S ′ to Xi∪{s, t, aXi

}. For every i, we construct
a word wi of length i, that has a letter for every node in Xi and captures all
relevant information about those nodes in S ′i. More precisely, wi

def
= σ1

i · · ·σii ,
where for every i and j, σji is the binary type of (aXi

, bj).
Since B3 is sufficiently large with respect to τaux, it follows, by Higman’s

Lemma, that there are k and l such that k < l and wk v wl, that is wk =
σ1
kσ

2
k . . . σ

k
k = σi1l σ

i2
l . . . σ

ik
l for suitable numbers i1 < . . . < ik. Let~b

def
= (b1, . . . , bk)

and ~b′
def
= (bi1 , . . . , bik). Further, let Tk

def
= S ′k �Tk where Tk = {s, t, aXk

} ∪~b, and

Tl
def
= S ′l �Tl where Tl

def
= {s, t, aXl

} ∪~b′. We refer to Figure 2 for an illustration
of the substructures Tk and Tl of S ′.

It can be shown that Tk 'π Tl, where π is the isomorphism that maps s and
t to themselves, aXk

to aXl
and bj to bij for every j ∈ {1, . . . , k}.

Thus, by the Substructure Lemma, application of the following two update
sequences to S ′ results in the same query result:

(β1) Deleting edges (aXk
, b1), . . . , (aXk

, bk) and adding an edge (s, aXk
).

(β2) Deleting edges (aXl
, bi1), . . . , (aXl

, bik) and adding an edge (s, aXl
).

However, applying β1 yields a graph in which t is not reachable from s, whereas
by applying β2 a graph is obtained in which t is reachable from s. This is the
desired contradiction. ut

10 Thomas Zeume and Thomas Schwentick

4.2 Separating Low Arities

An arity hierarchy for DynFO was established in [3]. The dynamic queries Qk+1

used to separate k-ary and (k + 1)-ary DynFO can already be maintained in
(k + 1)-ary DynProp, thus the hierarchy transfers to DynProp immediately.
However,Qk+1 is a k-ary query and has an input schema of arity 6k+1 (improved
to 3k+1 in [14]). Here we establish a strict arity hierarchy between unary, binary
and ternary DynProp for Boolean queries and binary input schemas.

We use the problems s-t-TwoPath, where one asks whether there is a path
of length two from s to t in a given s-t-graph G, and the problem s-TwoPath
where one asks whether there is any path of length 2 starting in s.

Proposition 8. The dynamic query Dyn(s-t-TwoPath) is in binary DynProp,
but not in unary DynProp.

Proposition 9. The dynamic query Dyn(s-TwoPath) is in ternary DynProp,
but not in binary DynProp.

5 Lower Bounds with Auxiliary Functions

In this section we consider the extension of the quantifier-free update formalism
by auxiliary functions. Recall that DynProp-update formulas have access only
to the inserted or deleted tuple ~a and the currently updated tuple of an auxiliary
relation ~b. When auxiliary functions are allowed in update formulas, further
elements of the structure can be accessed by function application. This can
be seen as adding weak quantification to quantifier-free formulas. The class of
dynamic queries that can be maintained with quantifier-free update formulas
and auxiliary functions is denoted DynQF.

DynQF is strictly more expressive than DynProp. E.g., it contains all Dyck
languages, among other non-regular languages [6]. Further, undirected reacha-
bility can be maintained in DynQF with built-in relations [5].

Lists can be represented by unary functions in a straightforward way. There-
fore, it is not surprising that the upper bound of Proposition 8 already holds for
unary DynProp with unary built-in functions.

Proposition 10. Dyn(s-t-Reach) on 1-layered s-t-graphs can be maintained
in unary DynProp with unary built-in functions.

Yet, unary DynQF cannot maintain the reachability query. Also Theorem 5
can be extended to quantifier-free programs with auxiliary functions.

Theorem 11. Dyn(s-t-Reach) is not in unary DynQF.

Theorem 12. Dyn(s-t-Reach) cannot be maintained in DynQF with invari-
ant initialization mapping and empty built-in schema. This holds even for 1-
layered s-t-graphs.

On the quantifier-free dynamic complexity of Reachability 11

6 Lower Bounds for Other Dynamic Queries

Lower bounds for the dynamic variants of the k-Clique and k-Col prob-
lems (where k is fixed) can be established via reductions to the dynamic s-t-
reachability query for shallow graphs.

Proposition 13. The dynamic query Dyn(k-Clique), for k ≥ 3, and the dy-
namic query Dyn(k-Col), for k ≥ 2, are not in binary DynProp.

Proposition 14. The dynamic query Dyn(k-Clique), for k ≥ 3, and the dy-
namic query Dyn(k-Col), for k ≥ 2, cannot be maintained in DynQF with
invariant initialization mapping.

7 Normal forms for Dynamic Programs

In this section, we give normal forms for dynamic programs. The study of normal
forms has a long tradition in logics. Normal forms are often helpful in proofs
based on the structure of formulas and yield insights for the construction of
algorithms.

A formula is negation-free if it does not use negation at all. A formula is
conjunctive if it is a conjunction of (positive or negated) literals. A dynamic
program is negation-free (conjunctive, respectively) if all its update formulas
are negation-free (conjunctive, respectively). Two dynamic programs P and P ′
are equivalent, if they maintain the same query. The results in this section allow
arbitrary initialization but no auxiliary functions. The first theorem is a straight-
forward generalization of Theorem 6.6 from [5] which states this observation for
a subclass of DynProp.

Theorem 15. (a) Every DynFO-program has an equivalent negation-free DynFO-
program.

(b) Every DynProp-program has an equivalent negation-free DynProp-program.

Theorem 16. Every DynProp-program has an equivalent conjunctive DynProp-
program.

8 Future Work

The question whether Reachability is maintainable with first-order updates re-
mains one of the major open questions in dynamic complexity. Proving that
Reachability cannot be maintained with quantifier-free updates with arbitrary
auxiliary data seems to be a worthwhile intermediate goal, but it appears non-
trivial as well.

We contributed to the intermediate goal by giving a first lower bound for
binary auxiliary relations. Whether the strictness of the arity hierarchy for
DynProp extends beyond arity three is another open question.

12 Thomas Zeume and Thomas Schwentick

For (full) first-order updates a major challenge is the development of lower
bound tools. Current techniques are in some sense not fully dynamic: either
results from static descriptive complexity are applied to constant-length update
sequences; or non-constant but very regular update sequences are used. In the
latter case, the updates do not depend on previous changes to the auxiliary data
(as, e.g., in [7] and in this paper). Finding techniques that adapt to changes
could be a good starting point.

The normal forms obtained for DynProp give hope that some fragments
of DynFO collapse. Therefore, we plan to study normal forms for DynFO ex-
tensively. One interesting question being which fragments of DynFO can be
captured by a conjunctive query normal form.

References

[1] Patnaik, S., Immerman, N.: Dyn-FO: A parallel, dynamic complexity class. In:
PODS, ACM Press (1994) 210–221

[2] Hesse, W.: The dynamic complexity of transitive closure is in DynTC0. In: ICDT.
(2001) 234–247

[3] Dong, G., Su, J.: Arity bounds in first-order incremental evaluation and definition
of polynomial time database queries. J. Comput. Syst. Sci. 57(3) (1998) 289–308

[4] Dong, G., Libkin, L., Wong, L.: Incremental recomputation in local languages.
Inf. Comput. 181(2) (2003) 88–98

[5] Hesse, W.: Dynamic Computational Complexity. PhD thesis, University of Mas-
sachusetts Amherst (2003)

[6] Gelade, W., Marquardt, M., Schwentick, T.: The dynamic complexity of formal
languages. In: STACS. (2009) 481–492

[7] Grädel, E., Siebertz, S.: Dynamic definability. In: ICDT. (2012) 236–248
[8] Patrascu, M., Demaine, E.D.: Lower bounds for dynamic connectivity. In Babai,

L., ed.: STOC, ACM (2004) 546–553
[9] Zeume, T., Schwentick, T.: On the quantifier-free dynamic complexity of reacha-

bility. CoRR abs/1306.3056 (2013) http://arxiv.org/abs/1306.3056.
[10] Weber, V., Schwentick, T.: Dynamic complexity theory revisited. Theory Comput.

Syst. 40(4) (2007) 355–377
[11] Gelade, W., Marquardt, M., Schwentick, T.: The dynamic complexity of formal

languages. ACM Trans. Comput. Log. 13(3) (2012) 19
[12] Etessami, K.: Dynamic tree isomorphism via first-order updates. In: PODS, ACM

Press (1998) 235–243
[13] Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with Higman’s

lemma. In: ICALP vol. 2. (2011) 441–452
[14] Dong, G., Zhang, L.: Separating auxiliary arity hierarchy of first-order incremental

evaluation systems using (3k+1)-ary input relations. Int. J. Found. Comput. Sci.
11(4) (2000) 573–578

http://arxiv.org/abs/1306.3056

	On the quantifier-free dynamic complexity of Reachability
	Thomas Zeume and Thomas Schwentick

